Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253846

RESUMO

Alu elements are one of the most successful groups of RNA retrotransposons and make up 11% of the human genome with over 1 million individual loci. They are linked to genetic defects, increases in sequence diversity, and influence transcriptional activity. Still, their RNA metabolism is poorly understood yet. It is even unclear whether Alu elements are mostly transcribed by RNA Polymerase II or III. We have conducted a transcription shutoff experiment by α-amanitin and metabolic RNA labeling by 4-thiouridine combined with RNA fragmentation (TT-seq) and RNA-seq to shed further light on the origin and life cycle of Alu transcripts. We find that Alu RNAs are more stable than previously thought and seem to originate in part from RNA Polymerase II activity, as previous reports suggest. Their expression however seems to be independent of the transcriptional activity of adjacent genes. Furthermore, we have developed a novel statistical test for detecting the expression of quantitative trait loci in Alu elements that relies on the de Bruijn graph representation of all Alu sequences. It controls for both statistical significance and biological relevance using a tuned k-mer representation, discovering influential sequence features missed by regular motif search. In addition, we discover several point mutations using a generalized linear model, and motifs of interest, which also match transcription factor-binding motifs.


Assuntos
RNA Polimerase II , RNA , Elementos Alu/genética , Humanos , RNA/genética , RNA Polimerase II/metabolismo , Retroelementos/genética , Transcrição Gênica
2.
Mol Cell ; 81(9): 1920-1934.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689748

RESUMO

Transcription by RNA polymerase II (Pol II) is coupled to pre-mRNA splicing, but the underlying mechanisms remain poorly understood. Co-transcriptional splicing requires assembly of a functional spliceosome on nascent pre-mRNA, but whether and how this influences Pol II transcription remains unclear. Here we show that inhibition of pre-mRNA branch site recognition by the spliceosome component U2 snRNP leads to a widespread and strong decrease in new RNA synthesis from human genes. Multiomics analysis reveals that inhibition of U2 snRNP function increases the duration of Pol II pausing in the promoter-proximal region, impairs recruitment of the pause release factor P-TEFb, and reduces Pol II elongation velocity at the beginning of genes. Our results indicate that efficient release of paused Pol II into active transcription elongation requires the formation of functional spliceosomes and that eukaryotic mRNA biogenesis relies on positive feedback from the splicing machinery to the transcription machinery.


Assuntos
RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/enzimologia , Elongação da Transcrição Genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Células HeLa , Humanos , Células K562 , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Fatores de Tempo
3.
EMBO J ; 40(9): e107015, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33555055

RESUMO

Eukaryotic RNA polymerase II (Pol II) contains a tail-like, intrinsically disordered carboxy-terminal domain (CTD) comprised of heptad-repeats, that functions in coordination of the transcription cycle and in coupling transcription to co-transcriptional processes. The CTD repeat number varies between species and generally increases with genome size, but the reasons for this are unclear. Here, we show that shortening the CTD in human cells to half of its length does not generally change pre-mRNA synthesis or processing in cells. However, CTD shortening decreases the duration of promoter-proximal Pol II pausing, alters transcription of putative enhancer elements, and delays transcription activation after stimulation of the MAP kinase pathway. We suggest that a long CTD is required for efficient enhancer-dependent recruitment of Pol II to target genes for their rapid activation.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Deleção de Sequência , Ativação Transcricional , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Regiões Promotoras Genéticas , Domínios Proteicos , RNA Polimerase II/genética
4.
Mol Cell ; 81(3): 514-529.e6, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33385327

RESUMO

Termination of RNA polymerase II (RNAPII) transcription in metazoans relies largely on the cleavage and polyadenylation (CPA) and integrator (INT) complexes originally found to act at the ends of protein-coding and small nuclear RNA (snRNA) genes, respectively. Here, we monitor CPA- and INT-dependent termination activities genome-wide, including at thousands of previously unannotated transcription units (TUs), producing unstable RNA. We verify the global activity of CPA occurring at pA sites indiscriminately of their positioning relative to the TU promoter. We also identify a global activity of INT, which is largely sequence-independent and restricted to a ~3-kb promoter-proximal region. Our analyses suggest two functions of genome-wide INT activity: it dampens transcriptional output from weak promoters, and it provides quality control of RNAPII complexes that are unfavorably configured for transcriptional elongation. We suggest that the function of INT in stable snRNA production is an exception from its general cellular role, the attenuation of non-productive transcription.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerase II/metabolismo , RNA Nuclear Pequeno/biossíntese , Terminação da Transcrição Genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Poliadenilação , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Nuclear Pequeno/genética
5.
Genome Res ; 30(9): 1332-1344, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32887688

RESUMO

Eukaryotic genes often generate a variety of RNA isoforms that can lead to functionally distinct protein variants. The synthesis and stability of RNA isoforms is poorly characterized because current methods to quantify RNA metabolism use short-read sequencing and cannot detect RNA isoforms. Here we present nanopore sequencing-based isoform dynamics (nano-ID), a method that detects newly synthesized RNA isoforms and monitors isoform metabolism. Nano-ID combines metabolic RNA labeling, long-read nanopore sequencing of native RNA molecules, and machine learning. Nano-ID derives RNA stability estimates and evaluates stability determining factors such as RNA sequence, poly(A)-tail length, secondary structure, translation efficiency, and RNA-binding proteins. Application of nano-ID to the heat shock response in human cells reveals that many RNA isoforms change their stability. Nano-ID also shows that the metabolism of individual RNA isoforms differs strongly from that estimated for the combined RNA signal at a specific gene locus. Nano-ID enables studies of RNA metabolism at the level of single RNA molecules and isoforms in different cell states and conditions.


Assuntos
Sequenciamento por Nanoporos/métodos , Isoformas de RNA/química , Estabilidade de RNA , Linhagem Celular Tumoral , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Isoformas de RNA/síntese química , Uridina/química
6.
Nucleic Acids Res ; 48(14): 7712-7727, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32805052

RESUMO

Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Cromatina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Células HEK293 , Humanos , Mutação , Fosforilação , RNA/biossíntese , RNA Polimerase II/química , Análise de Sequência de RNA , Serina/metabolismo , Fatores de Elongação da Transcrição/metabolismo
7.
Nat Genet ; 52(7): 719-727, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483291

RESUMO

The Mediator complex directs signals from DNA-binding transcription factors to RNA polymerase II (Pol II). Despite this pivotal position, mechanistic understanding of Mediator in human cells remains incomplete. Here we quantified Mediator-controlled Pol II kinetics by coupling rapid subunit degradation with orthogonal experimental readouts. In agreement with a model of condensate-driven transcription initiation, large clusters of hypophosphorylated Pol II rapidly disassembled upon Mediator degradation. This was accompanied by a selective and pronounced disruption of cell-type-specifying transcriptional circuits, whose constituent genes featured exceptionally high rates of Pol II turnover. Notably, the transcriptional output of most other genes was largely unaffected by acute Mediator ablation. Maintenance of transcriptional activity at these genes was linked to an unexpected CDK9-dependent compensatory feedback loop that elevated Pol II pause release rates across the genome. Collectively, our work positions human Mediator as a globally acting coactivator that selectively safeguards the functionality of cell-type-specifying transcriptional networks.


Assuntos
Regulação da Expressão Gênica , Complexo Mediador/fisiologia , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Cromatina/fisiologia , Drosophila , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Complexo Mediador/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo
8.
Nat Commun ; 10(1): 3603, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399571

RESUMO

Eukaryotic gene transcription is often controlled at the level of RNA polymerase II (Pol II) pausing in the promoter-proximal region. Pausing Pol II limits the frequency of transcription initiation ('pause-initiation limit'), predicting that the pause duration must be decreased for transcriptional activation. To test this prediction, we conduct a genome-wide kinetic analysis of the heat shock response in human cells. We show that the pause-initiation limit restricts transcriptional activation at most genes. Gene activation generally requires the activity of the P-TEFb kinase CDK9, which decreases the duration of Pol II pausing and thereby enables an increase in the productive initiation frequency. The transcription of enhancer elements is generally not pause limited and can be activated without CDK9 activity. Our results define the kinetics of Pol II transcriptional regulation in human cells at all gene classes during a natural transcription response.


Assuntos
Regulação da Expressão Gênica , Transcrição Gênica , Ativação Transcricional/genética , Ativação Transcricional/fisiologia , Sobrevivência Celular , Quinase 9 Dependente de Ciclina/metabolismo , Genoma , Proteínas de Choque Térmico HSP70/genética , Humanos , Células K562 , Cinética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo
9.
Cell ; 176(1-2): 182-197.e23, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30595450

RESUMO

During development, the precise relationships between transcription and chromatin modifications often remain unclear. We use the X chromosome inactivation (XCI) paradigm to explore the implication of chromatin changes in gene silencing. Using female mouse embryonic stem cells, we initiate XCI by inducing Xist and then monitor the temporal changes in transcription and chromatin by allele-specific profiling. This reveals histone deacetylation and H2AK119 ubiquitination as the earliest chromatin alterations during XCI. We show that HDAC3 is pre-bound on the X chromosome and that, upon Xist coating, its activity is required for efficient gene silencing. We also reveal that first PRC1-associated H2AK119Ub and then PRC2-associated H3K27me3 accumulate initially at large intergenic domains that can then spread into genes only in the context of histone deacetylation and gene silencing. Our results reveal the hierarchy of chromatin events during the initiation of XCI and identify key roles for chromatin in the early steps of transcriptional silencing.


Assuntos
Cromatina/metabolismo , Inativação do Cromossomo X/genética , Inativação do Cromossomo X/fisiologia , Acetilação , Animais , Cromatina/genética , Células-Tronco Embrionárias , Epigenômica/métodos , Feminino , Inativação Gênica , Histona Desacetilases/metabolismo , Histonas/metabolismo , Camundongos , Proteínas do Grupo Polycomb/metabolismo , Processamento de Proteína Pós-Traducional , RNA Longo não Codificante/metabolismo , Transcrição Gênica , Ubiquitinação , Cromossomo X/metabolismo
10.
Mol Cell ; 73(1): 97-106.e4, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472190

RESUMO

Transcription initiation requires opening of promoter DNA in the RNA polymerase II (Pol II) pre-initiation complex (PIC), but it remains unclear how this is achieved. Here we report the cryo-electron microscopic (cryo-EM) structure of a yeast PIC that contains underwound, distorted promoter DNA in the closed Pol II cleft. The DNA duplex axis is offset at the upstream edge of the initially melted DNA region (IMR) where DNA opening begins. Unstable IMRs are found in a subset of yeast promoters that we show can still initiate transcription after depletion of the transcription factor (TF) IIH (TFIIH) translocase Ssl2 (XPB in human) from the nucleus in vivo. PIC-induced DNA distortions may thus prime the IMR for melting and may explain how unstable IMRs that are predicted in promoters of Pol I and Pol III can open spontaneously. These results suggest that DNA distortion in the polymerase cleft is a general mechanism that contributes to promoter opening.


Assuntos
DNA Fúngico/genética , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Iniciação da Transcrição Genética
11.
Elife ; 62017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28994650

RESUMO

Gene transcription can be activated by decreasing the duration of RNA polymerase II pausing in the promoter-proximal region, but how this is achieved remains unclear. Here we use a 'multi-omics' approach to demonstrate that the duration of polymerase pausing generally limits the productive frequency of transcription initiation in human cells ('pause-initiation limit'). We further engineer a human cell line to allow for specific and rapid inhibition of the P-TEFb kinase CDK9, which is implicated in polymerase pause release. CDK9 activity decreases the pause duration but also increases the productive initiation frequency. This shows that CDK9 stimulates release of paused polymerase and activates transcription by increasing the number of transcribing polymerases and thus the amount of mRNA synthesized per time. CDK9 activity is also associated with long-range chromatin interactions, suggesting that enhancers can influence the pause-initiation limit to regulate transcription.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética , Linfócitos B/metabolismo , Linhagem Celular , Humanos , Regiões Promotoras Genéticas , Ligação Proteica
12.
Nat Commun ; 8: 15741, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585565

RESUMO

The conserved polymerase-associated factor 1 complex (Paf1C) plays multiple roles in chromatin transcription and genomic regulation. Paf1C comprises the five subunits Paf1, Leo1, Ctr9, Cdc73 and Rtf1, and binds to the RNA polymerase II (Pol II) transcription elongation complex (EC). Here we report the reconstitution of Paf1C from Saccharomyces cerevisiae, and a structural analysis of Paf1C bound to a Pol II EC containing the elongation factor TFIIS. Cryo-electron microscopy and crosslinking data reveal that Paf1C is highly mobile and extends over the outer Pol II surface from the Rpb2 to the Rpb3 subunit. The Paf1-Leo1 heterodimer and Cdc73 form opposite ends of Paf1C, whereas Ctr9 bridges between them. Consistent with the structural observations, the initiation factor TFIIF impairs Paf1C binding to Pol II, whereas the elongation factor TFIIS enhances it. We further show that Paf1C is globally required for normal mRNA transcription in yeast. These results provide a three-dimensional framework for further analysis of Paf1C function in transcription through chromatin.


Assuntos
Complexos Multiproteicos/química , Proteínas Nucleares/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fatores de Elongação da Transcrição/química , Ligação Competitiva , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação Proteica , RNA Polimerase II/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
13.
Mol Syst Biol ; 13(3): 920, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270558

RESUMO

To monitor transcriptional regulation in human cells, rapid changes in enhancer and promoter activity must be captured with high sensitivity and temporal resolution. Here, we show that the recently established protocol TT-seq ("transient transcriptome sequencing") can monitor rapid changes in transcription from enhancers and promoters during the immediate response of T cells to ionomycin and phorbol 12-myristate 13-acetate (PMA). TT-seq maps eRNAs and mRNAs every 5 min after T-cell stimulation with high sensitivity and identifies many new primary response genes. TT-seq reveals that the synthesis of 1,601 eRNAs and 650 mRNAs changes significantly within only 15 min after stimulation, when standard RNA-seq does not detect differentially expressed genes. Transcription of enhancers that are primed for activation by nucleosome depletion can occur immediately and simultaneously with transcription of target gene promoters. Our results indicate that enhancer transcription is a good proxy for enhancer regulatory activity in target gene activation, and establish TT-seq as a tool for monitoring the dynamics of enhancer landscapes and transcription programs during cellular responses and differentiation.


Assuntos
Perfilação da Expressão Gênica/métodos , Ionomicina/farmacologia , Análise de Sequência de RNA/métodos , Linfócitos T/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Pareamento de Bases , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , RNA/análise , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional
14.
PLoS One ; 12(1): e0169249, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28056037

RESUMO

Accurate maps of promoters and enhancers are required for understanding transcriptional regulation. Promoters and enhancers are usually mapped by integration of chromatin assays charting histone modifications, DNA accessibility, and transcription factor binding. However, current algorithms are limited by unrealistic data distribution assumptions. Here we propose GenoSTAN (Genomic STate ANnotation), a hidden Markov model overcoming these limitations. We map promoters and enhancers for 127 cell types and tissues from the ENCODE and Roadmap Epigenomics projects, today's largest compendium of chromatin assays. Extensive benchmarks demonstrate that GenoSTAN generally identifies promoters and enhancers with significantly higher accuracy than previous methods. Moreover, GenoSTAN-derived promoters and enhancers showed significantly higher enrichment of complex trait-associated genetic variants than current annotations. Altogether, GenoSTAN provides an easy-to-use tool to define promoters and enhancers in any system, and our annotation of human transcriptional cis-regulatory elements constitutes a rich resource for future research in biology and medicine.


Assuntos
Elementos Facilitadores Genéticos/genética , Epigenômica/métodos , Regiões Promotoras Genéticas/genética , Algoritmos , Cromatina/metabolismo , Biologia Computacional/métodos , Histonas/metabolismo , Humanos , Elementos Reguladores de Transcrição/genética
15.
Science ; 352(6290): 1225-8, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257258

RESUMO

Pervasive transcription of the genome produces both stable and transient RNAs. We developed transient transcriptome sequencing (TT-seq), a protocol that uniformly maps the entire range of RNA-producing units and estimates rates of RNA synthesis and degradation. Application of TT-seq to human K562 cells recovers stable messenger RNAs and long intergenic noncoding RNAs and additionally maps transient enhancer, antisense, and promoter-associated RNAs. TT-seq analysis shows that enhancer RNAs are short-lived and lack U1 motifs and secondary structure. TT-seq also maps transient RNA downstream of polyadenylation sites and uncovers sites of transcription termination; we found, on average, four transcription termination sites, distributed in a window with a median width of ~3300 base pairs. Termination sites coincide with a DNA motif associated with pausing of RNA polymerase before its release from the genome.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , RNA Mensageiro/genética , Regiões Terminadoras Genéticas , Terminação da Transcrição Genética , Transcriptoma , Pareamento de Bases , Perfilação da Expressão Gênica , Humanos , Poliadenilação , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética
16.
Proc Natl Acad Sci U S A ; 111(11): 4139-44, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591639

RESUMO

During maternal-to-embryonic transition control of embryonic development gradually switches from maternal RNAs and proteins stored in the oocyte to gene products generated after embryonic genome activation (EGA). Detailed insight into the onset of embryonic transcription is obscured by the presence of maternal transcripts. Using the bovine model system, we established by RNA sequencing a comprehensive catalogue of transcripts in germinal vesicle and metaphase II oocytes, and in embryos at the four-cell, eight-cell, 16-cell, and blastocyst stages. These were produced by in vitro fertilization of Bos taurus taurus oocytes with sperm from a Bos taurus indicus bull to facilitate parent-specific transcriptome analysis. Transcripts from 12.4 to 13.7 × 10(3) different genes were detected in the various developmental stages. EGA was analyzed by (i) detection of embryonic transcripts, which are not present in oocytes; (ii) detection of transcripts from the paternal allele; and (iii) detection of primary transcripts with intronic sequences. These strategies revealed (i) 220, (ii) 937, and (iii) 6,848 genes to be activated from the four-cell to the blastocyst stage. The largest proportion of gene activation [i.e., (i) 59%, (ii) 42%, and (iii) 58%] was found in eight-cell embryos, indicating major EGA at this stage. Gene ontology analysis of genes activated at the four-cell stage identified categories related to RNA processing, translation, and transport, consistent with preparation for major EGA. Our study provides the largest transcriptome data set of bovine oocyte maturation and early embryonic development and detailed insight into the timing of embryonic activation of specific genes.


Assuntos
Bovinos/genética , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Ativação Transcricional/genética , Animais , Sequência de Bases , Bovinos/metabolismo , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Ontologia Genética , Genômica/métodos , Dados de Sequência Molecular , Análise de Sequência de RNA
17.
Mol Syst Biol ; 10: 717, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489117

RESUMO

During the cell cycle, the levels of hundreds of mRNAs change in a periodic manner, but how this is achieved by alterations in the rates of mRNA synthesis and degradation has not been studied systematically. Here, we used metabolic RNA labeling and comparative dynamic transcriptome analysis (cDTA) to derive mRNA synthesis and degradation rates every 5 min during three cell cycle periods of the yeast Saccharomyces cerevisiae. A novel statistical model identified 479 genes that show periodic changes in mRNA synthesis and generally also periodic changes in their mRNA degradation rates. Peaks of mRNA degradation generally follow peaks of mRNA synthesis, resulting in sharp and high peaks of mRNA levels at defined times during the cell cycle. Whereas the timing of mRNA synthesis is set by upstream DNA motifs and their associated transcription factors (TFs), the synthesis rate of a periodically expressed gene is apparently set by its core promoter.


Assuntos
Perfilação da Expressão Gênica , Genes cdc , Estabilidade de RNA/genética , RNA Mensageiro/biossíntese , Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica
18.
Mol Cell ; 52(1): 52-62, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24119399

RESUMO

The rates of mRNA synthesis and degradation determine cellular mRNA levels and can be monitored by comparative dynamic transcriptome analysis (cDTA) that uses nonperturbing metabolic RNA labeling. Here we present cDTA data for 46 yeast strains lacking genes involved in mRNA degradation and metabolism. In these strains, changes in mRNA degradation rates are generally compensated by changes in mRNA synthesis rates, resulting in a buffering of mRNA levels. We show that buffering of mRNA levels requires the RNA exonuclease Xrn1. The buffering is rapidly established when mRNA synthesis is impaired, but is delayed when mRNA degradation is impaired, apparently due to Xrn1-dependent transcription repressor induction. Cluster analysis of the data defines the general mRNA degradation machinery, reveals different substrate preferences for the two mRNA deadenylase complexes Ccr4-Not and Pan2-Pan3, and unveils an interwoven cellular mRNA surveillance network.


Assuntos
Exorribonucleases/metabolismo , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Análise por Conglomerados , Exorribonucleases/genética , Regulação Fúngica da Expressão Gênica , Cinética , Modelos Genéticos , Mutação , N-Glicosil Hidrolases/metabolismo , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
19.
RNA Biol ; 10(6): 1042-56, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23669073

RESUMO

Development, growth and adult survival are coordinated with available metabolic resources, ascertaining that the organism responds appropriately to environmental conditions. MicroRNAs are short (21-23 nt) regulatory RNAs that confer specificity on the RNA-induced silencing complex (RISC) to inhibit a given set of mRNA targets. We profiled changes in miRNA expression during adult life in Drosophila melanogaster and determined that miR-277 is downregulated during adult life. Molecular analysis revealed that this miRNA controls branched-chain amino acid (BCAA) catabolism and as a result it can modulate the activity of the TOR kinase, a central growth regulator, in cultured cells. Metabolite analysis in cultured cells as well as flies suggests that the mechanistic basis may be an accumulation of branched-chain α-keto-acids (BCKA), rather than BCAAs, thus avoiding potentially detrimental consequences of increased branched chain amino acid levels on e.g., translational fidelity. Constitutive miR-277 expression shortens lifespan and is synthetically lethal with reduced insulin signaling, indicating that metabolic control underlies this phenotype. Transgenic inhibition with a miRNA sponge construct also shortens lifespan, in particular on protein-rich food. Thus, optimal metabolic adaptation appears to require tuning of cellular BCAA catabolism by miR-277.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Drosophila melanogaster/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Envelhecimento , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Insulina/metabolismo , Longevidade , Análise de Sequência de RNA
20.
J Biol Chem ; 287(53): 44017-26, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23135281

RESUMO

The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription that is required for the regulated expression of protein-coding genes. Mediator serves as an end point of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are not well understood. Here, we used mass spectrometry and dynamic transcriptome analysis to investigate a functional role of Mediator phosphorylation in gene expression. Affinity purification and mass spectrometry revealed that Mediator from the yeast Saccharomyces cerevisiae is phosphorylated at multiple sites of 17 of its 25 subunits. Mediator phosphorylation levels change upon an external stimulus set by exposure of cells to high salt concentrations. Phosphorylated sites in the Mediator tail subunit Med15 are required for suppression of stress-induced changes in gene expression under non-stress conditions. Thus dynamic and differential Mediator phosphorylation contributes to gene regulation in eukaryotic cells.


Assuntos
Regulação Fúngica da Expressão Gênica , Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Motivos de Aminoácidos , Complexo Mediador/química , Complexo Mediador/genética , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...